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Abstract— Understanding the principles of motor coordi-
nation with redundant degrees of freedom still remains a
challenging problem, particularly for new research in highly
redundant robots like humanoids. Even after more than a
decade of research, task space control with redundacy resolution
still remains an incompletely understood theoretical topic, and
also lacks a larger body of thorough experimental investigation
on complex robotic systems. This paper presents our first steps
towards the development of a working redundancy resolution
algorithm which is robust against modeling errors and unfore-
seen disturbances arising from contact forces.

To gain a better understanding of the pros and cons of
different approaches to redundancy resolution, we focus on
a comparative empirical evaluation. First, we review several
redundancy resolution schemes at the velocity, acceleration
and torque levels presented in the literature in a common
notational framework and also introduce some new variants
of these previous approaches. Second, we present experimental
comparisons of these approaches on a seven-degree-of-freedom
anthropomorphic robot arm. Surprisingly, one of our simplest
algorithms empirically demonstrates the best performance, de-
spite, from a theoretical point, the algorithm does not share the
same beauty as some of the other methods. Finally, we discuss
practical properties of these control algorithms, particularly in
light of inevitable modeling errors of the robot dynamics.

Index Terms— Redundancy resolution, Inverse kinematics,
Task space control, Null space optimization, Dynamical decou-
pling

I. INTRODUCTION

Understanding the principles of natural movement gener-
ation has previously been and continues to be one of the
most interesting and important open problems in the fields
of robotics and neural control of movement. One of the major
difficulties that arises is resolving the redundant degrees
of freedom (DOFs) of a task in a general, but also task
supporting way. While originally explored in robotic systems
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with only few redundant DOFs, the problem of redundancy
resolution has recently become increasingly prominent again
within the context of highly complex robotic systems such as
humanoid robots. These machines have a very large number
of redundant DOFs and emphasize redundancy resolution
schemes that are robust under strong disturbances, real-time
control in dynamically changing environments, a hierarchy
of multiple task constraints, and esthetically appealing move-
ment for working in a human environment.

The literature opn kinematic redundancy resolution offers a
wide variety of techniques. A typical approach makes use of
the Jacobian pseudoinverse with local null-space optimization
in order to determine the inverse kinematics transformation
[1]. Within this general framework, kinematic redundancy
can be resolved at the velocity [2], acceleration [3]–[6] and
torque levels [7], [8], where the desired joint velocities,
accelerations, and torques are computed, respectively, for a
desired endeffector velocity, acceleration, and force. It should
be noted, however, that many of the previous investigations
of control with inverse kinematics were confined to pure
simulation studies, and also only investigated rather sim-
ple movements, like pointing, reaching, or circular drawing
movements. Moreover, stability properties of most algorithms
are only incompletely understood. A noteworthy exception is
a recent study by Arimoto [9], which proposes a provably
stable redundancy resolution algorithm for reaching move-
ments based on the Jacobian transpose with joint velocity
damping. One of the advantages of this approach is that it
does not suffer from singularity problems associated with
matrix inversion of the Jacobian. However, it is difficult to
apply this method to tasks other than reaching for a static
target; for example, tasks which require control of position,
velocity and/or acceleration of the task coordinates, as is the
case when tracking a moving target or balancing a pole [10].

From our point of view, even after more than a decade of
research, inverse kinematics control remains a surprisingly
incompletely understood theoretical topic, and also lacks a
larger body of thorough empirical investigation on complex
robotic systems that do not lend themselves to highly accurate



dynamics and kinematics models, as is typically the case
for complex humanoids. It is particularly the latter domain
that we would like to address in our research. Our ultimate
goals in this domain are to i) quantify the principles (or
optimization criteria) used in human-like redundancy resolu-
tion, ii) suggest computational models and robust algorithms
that can deal with expected and unexpected contact forces,
iii) investigate human behavior based on theory driven ex-
perimental design, and iv) address learning algorithms for
redundancy resolution. In our previous studies, we have
addressed computational efficiency in redundancy resolution
algorithms and inverse kinematics learning based on velocity
based approaches [11], [12].

From a more algorithmic point of view, we are interested
in developing a robust inverse dynamics controller with re-
dundancy resolution that satisfies the following requirements:

1) avoids high-gain control or integrators in order to
robustly deal with unforeseen impacts in a dynamically
changing environment

2) has the ability to incorporate force and kinematic
constraints

3) can work with any combination of desired acceleration,
velocity, and position specification

4) resolves redundancy in a task supporting way
5) is insensitive to sensory noise or slow sampling rates

of task space sensory feedback (e.g. 60Hz vision)
6) is robust in face of kinematic and dynamic modeling

errors
This paper presents our first steps towards addressing

these issues by focusing on a comparative evaluation of
various previously suggested redundancy resolution theories,
including comprehensive experimental comparisons on an
anthropomorphic robot. We first review several theories pre-
sented in the literature in a common notational framework
and also introduce some new variants of the previous ap-
proaches. We then experimentally test these approaches on
the seven-degree-of-freedom anthropomorphic robot Sarcos
Master Arm and discuss their practical properties, particularly
in light of inevitable modeling errors of the robot dynamics.

Our results provide useful insights into the development of
a robust algorithm that fulfills the constraints listed above and
offer several simplifications and new variants of previously
suggested algorithms in the literature. Moreover, we believe
that our results will be helpful to outline a possible program
to investigate redundancy resolution in behavioral research
for computational neuroscience.

II. PROBLEM SETUP

The rigid body dynamics equations of a robot are given in
the form

M(q)q̈ + C(q, q̇) + g(q) = τ (1)

where q ∈ �n is the joint angle vector, M(q) is the inertia
matrix, C(q, q̇) is the Coriolis/centrifugal vector, g(q) is the
gravity vector, and τ is the joint torque vector.

The forward kinematics and differential relationship be-
tween the joint coordinates and the task coordinates are given
as

x = f(q) (2)

ẋ = J(q)q̇ (3)

ẍ = J(q)q̈ + J̇(q)q̇ (4)

where J(q) is the Jacobian matrix and x ∈ �m, where m <
n, is the task coordinate vector.

The basic idea in redundancy resolution in the velocity and
acceleration levels is to compute the desired joint velocities
and accelerations respectively as

q̇d = J†ẋd + (I− J†J)ξ1 (5)

q̈d = J†(ẍd − J̇q̇) + (I − J†J)ξ2 (6)

where J† is the pseudoinverse defined by J† = JT (JJT )−1,
ξ1 and ξ2 are arbitrary vectors, and ẋd and ẍd are the given
desired task space velocities and accelerations, respectively.
(I − J†J) projects arbitrary vectors ξ1 and ξ2 onto the null
space of the Jacobian J. Note that by equating (6) and the
analytical differentiation of (5), sufficient conditions for these
two resolution schemes to be consistent are derived in [4] and
[5], respectively, as

ξ2 = J̇†J(q̇ − ξ1) + ξ̇1 (7)

and
ξ2 = J̇T (J†)T (q̇ − ξ1) + ξ̇1 (8)

where J̇† = d
dt (J

†) for notational convenience. Note that it
can be shown that (7) and (8) are equivalent.

In the torque based redundancy resolution, the inertia-
weighted pseudoinverse J̄ = M−1JT (JM−1JT )−1 is used
to compute the desired joint torque command exploiting the
dynamical decoupling property of the joint torques that create
task space forces, and the joint torques that act only in the
null space of the task [7], [8].

In the next section, we will discuss the specific formu-
lations of various redundancy resolution schemes in more
detail.

III. CONTROLLER FORMULATIONS

In this paper, we consider the task of tracking a moving
target in task space with the desired positions, velocities
and accelerations given by xd, ẋd and ẍd, respectively. For
redundancy resolution, we employ a null-space posture opti-
mization with the cost function

g(q) =
1
2
(q − qrest)T Kw(q − qrest) (9)



where Kw is a weighting positive definite diagonal matrix
and qrest is some rest (preferred) posture.

Using this formulation, we will review several of the most
prominent algorithms for redundancy resolution, focusing on
algorithms at the velocity, acceleration and torque levels, and
also in a unified notational framework that will illuminate
similarities and differences.

A. Velocity based Control

Velocity based redundancy resolution computes the desired
joint velocities for a given task space desired velocity. Among
the most popular is the resolved motion rate control approach
based on Liegeois’ pseudoinverse with null-space optimiza-
tion [1].

1) Velocity based Control with Joint Velocity Integration:
This section introduces a velocity based redundancy reso-
lution scheme with joint velocity integration used in our
traditional implementaion of endpoint control (e.g., pole-
balancing [10]).

Given the velocities and positions of the target in task
space, we define the task space velocity command ẋr from
the addtion of a position error term with a target velocity
feedforward term as

ẋr = ẋd + Kp(xd − x) (10)

where Kp is a positive definite gain matrix. Note that this
scheme does not use the target acceleration information ẍd.

The reference joint velocities are calculated based on a
pseudoinverse solution with minimization of the cost function
(9) in the null space

q̇r = J†ẋr − (I − J†J)α∇g. (11)

In (11), the null-space vector is chosen to be the negative

gradient of the cost function as ξ1 = −α∇g = −α
(

∂g
∂q

)T

where α is a positive constant. The reference joint accelera-
tions and positions are obtained by numerical differentiation
and integration of the reference joint velocities (11), respec-
tively as

q̈r =
d

dt
q̇r � q̇r(t) − q̇r(t − ∆t)

∆t
(12)

qr =
∫ t

t0

q̇r dt′ � qr(t − ∆t) + q̇r(t)∆t (13)

where ∆t is the sampling period. The final control signal is
calculated using the computed torque control method with a
PD controller as

τ = M(qr)q̈r + C(qr, q̇r) + g(qr)
+ Kq,d(q̇r − q̇) + Kq,p(qr − q) (14)

where Kq,d and Kq,p are positive definite gain matrices.

This method has two disadvantages. One is that we do not
use the information of the target accelerations. The other is
the requirement of numerical differentiation and integration
of the desired joint velocities to obtain the desired joint
accelerations and joint positions. Numerical differentiation is
very sensitive to sensor noise, and integration has the problem
of windup if the robot motion is constrained by an external
disturbance for a long period, which ultimately accumulates
a large error giving rise to unrealizable joint torques.

2) Velocity based Control without Joint Velocity Integra-
tion: When considering contact forces with the environment,
it is desirable to avoid integrators. In this section, we intro-
duce a velocity based controller without joint velocity inte-
gration. Suppose we have the reference task space velocity
command and the reference joint velocities obtained from the
Liegeois’ null-space optimization,

ẋr = ẋd + Kp(xd − x) (15)

q̇r = J†ẋr − α(I − J†J)∇g. (16)

An inverse dynamics control law can be formulated with the
addition of a joint velocity feedback term as

τ = M(q)q̈r + C(q, q̇) + g(q) + Kq,d(q̇r − q̇) (17)

where the reference joint accelerations q̈r are calculated
through numerical differentiation as in (13). The control law
(17) can be rearranged as

τ = Mq̈r + C + g + Kq,d(q̇r − q̇) (18)

= M(q̈d + J†Kpė) + C + g + Kq,d(q̇d − q̇)
+ Kq,dJ†Kpe (19)

using the relationship (5) with ξ1 = −α∇g, where e =
xd − x. As in the previous velocity based controller, this
method has a disadvantage in that it ignores the information
of the target accelerations. The second disadvantage is that
the behavior of the task space dynamics cannot be easily
specified as compared to that of acceleration and torque based
schemes which we discuss below.

B. Acceleration based Control

1) Hsu’s Controller [3]: This section presents an acceler-
ation based redundancy resolution scheme proposed in [3].
In this method, the control law is given by

τ = M
(
J†(ẍr − J̇q̇) + φN

)
+ C + g (20)

where
ẍr = ẍd + Kdė + Kpe (21)

φN = (I−J†J)(ḣ+KNeN)−(J†J̇J†+J̇†)J(h−q̇)(22)

eN = (I−J†J)(h−q̇) (23)



h is a vector function, KN is a positive definite matrix, e =
xd − x, and Kp and Kp are positive definite gain matrices.
It can be shown that the control law (20) with (21) yields the
task space tracking error dynamics

ë + Kdė + Kpe = 0. (24)

This implies that this controller achieves asymptotic tracking
in the task space, i.e., e → 0 as t → ∞ assuming that J† is
full rank [3].

A slightly unclear issue in this formulation is how the
complex null-space vector φN in (22) is derived in [3]. As
a result of our analysis, the null-space vector (22) can be
rearranged as

φN = (I−J†J)[ḣ + KN (I−J†J)(h − q̇)]
− (J†J̇J† + J̇†)J(h − q̇)

= (I − J†J)[ḣ + KN(I − J†J)(h − q̇)]
− (I − J†J)J̇†J(h − q̇)

= (I−J†J)[J̇†J(q̇−h)+ḣ−KN(I−J†J)(q̇−h)](25)

Thus, the controller in [3] is equivalent to the case where

τ = Mq̈r + C + g (26)

q̈r = J†(ẍr − J̇q̇) + φN (27)

= J†(ẍr − J̇q̇) + (I − J†J)ξ2 (28)

ξ2 = J̇†J(q̇ − ξ1) + ξ̇1︸ ︷︷ ︸
same as (7)

−KN (I − J†J)(q̇ − ξ1) (29)

with h = ξ1 in (25). Notice that from (7) and (25), we
can consider that the acceleration null space vector (29) is
derived from analytical differentiation of the velocity based
resolution having an additional term. In the subsequent robot
implementation, we choose ξ1 = −α∇g such that

ξ2 = J̇†J(q̇+α∇g)+ ˙(∇g)−KN (I−J†J)(q̇+α∇g). (30)

Note that in this controller the inertia matrix premultiplies
the null space term as

τ =MJ†(ẍr − J̇q̇) + C + g + MφN . (31)

2) Simplified Acceleration based Control Variation 1 (with
nullspace pre-multiplication of M): As we have seen above,
the acceleration based method proposed in [3] has a rather
complicated null space vector (see (30)). This section intro-
duces an acceleration based controller with a simplified null
space vector.

Consider a control law

τ =Mq̈r + C + g (32)

where

q̈r = J†(ẍr − J̇q̇) + (I − J†J)ξ2 (33)

ξ2 = −Kq,dq̇ − α∇g (34)

and ẍr = ẍd + Kdė + Kpe.
In this controller, we simplify the null space vector ξ2

and introduce a Liegeois-like null space projection with a
damping term in the joint acceleration space. This controller
achieves asymptotic tracking in task space since we have

ë + Kdė + Kpe = 0. (35)

Note that in this controller the inertia matrix effectively
premultiplies the null space term as

τ =MJ†(ẍr − J̇q̇) + C + g + M(I − J†J)ξ2. (36)

3) Simplified Acceleration based Control Variation 2
(without nullspace pre-multiplication of M): In the controller
above, a null space optimization term is introduced in the
acceleration space as in (33). As a variant of this controller,
we introduce a control law in which a PD term using a
Liegeois-like null space projection is directly introduced in
the torque command:

τ =Mq̈r + C + g + (I − J†J)ξ2 (37)

=MJ†(ẍr−J̇q̇)+C+g+(I−J†J)(−Kq,dq̇−α∇g)(38)

where

q̈r = J†(ẍr − J̇q̇) (39)

ξ2 = −Kq,dq̇− α∇g (40)

and ẍr = ẍd + Kdė + Kpe.
With this control law, we have the following closed loop

dynamics:

Mq̈ = MJ†(ẍr−J̇q̇)+(I− J†J)(−Kq,dq̇ − α∇g)(41)

By pre-multiplying JM−1 to the both hand side, (41) can be
rearranged as

ë+Kdė+Kpe=JM−1(I−J†J)(Kq,dq̇+αKw(qrest−q))
(42)

Note that as (42) indicates there is interference between the
range and null space since the vector on the right hand
side of (42) drives the task space tracking error dynamics.
However, as our empirical results demonstrate in Section
V, we achieved excellent tracking performance although the
effect of interference is not clear because of the difficulty in
the mathematical analysis of (42). Moreover, in practice, the
effect of the interference cannot be easily measured since the
effect of modeling errors of the robot dynamics additionally
drives the task space error dynamics (42) in a complicated
manner and makes it more difficult to analyze. Further
investigation will be required to gain better understanding
of this interference issue.



C. Torque based Control

1) Khatib’s Controller [7]: A prominent framework for
torque based redundancy resolution scheme was proposed
based on operational space control in [7].

The dynamics which describe the motion of the task space
coordinates are given by

M̄(x)ẍ + C̄(x, ẋ) + ḡ(x) = F (43)

where

M̄ = (JM−1JT )−1 (44)

C̄ = (JM−1JT )−1(JM−1C − J̇q̇) (45)

ḡ = (JM−1JT )−1JM−1g. (46)

From these equations, a control law for the task space
dynamics (43) is designed to achieve asymptotic tracking of
the desired endeffector trajectory xd as

F = M̄ẍr + C̄ + ḡ (47)

where

ẍr = ẍd + Kp(ẋd − ẋ) + Kp(xd − x). (48)

From (43) and (47), it is straightforward to see

ë + Kpė + Kpe = 0 (49)

suggesting that e → 0 as t → ∞, where e = xd − x.
A joint torque command is formulated as

τ = JTF + (I − JT J̄T )τnull (50)

= JT (M̄ẍr + C̄ + ḡ) + (I − JT J̄T )τnull (51)

= JT (JM−1JT )−1[ẍr − J̇q̇ + JM−1(C + g)]
+ (I − JT J̄T )τnull (52)

= MJ̄[ẍr−J̇q̇+JM−1(C+g)]+(I−JT J̄T )τnull(53)

where J̄ is the inertia-weighted pseudoinverse defined by

J̄ = M−1JT (JM−1JT )−1 (54)

and τnull is an arbitrary torque vector. In this paper, we
choose τnull = −Kq,dq̇ − α∇g. It can be shown that
the inertia-weighed pseudoinverse of the Jacobian matrix is
the unique choice which dynamically decouples the joint
torque vector τ into the task space forces F and the torques
acting only on the null space motions of the manipulator
(I−JT J̄T )τnull [7], [8]. In other words, the null space term
(I − JT J̄T )τnull in (50) does not produce any force, and
thus motion, in the task space.

2) Dynamical Decoupling Controller Variation 1 (without
nullspace pre-multiplication of M, and compensation of C
and g in joint space): As presented in the previous section,
in Khatib’s redundancy resolution scheme [7], Coriolis and
gravitational terms are compensated in the task space. Moti-
vated by the discussions in [8], we suggest a variant of torque
based control by pre-compensating Coriolis and gravitational
terms in joint space.

Consider the control law

τ =C+g+JTF + (I− JT J̄T )τnull

=C+g+JT (JM−1JT )−1(ẍr − J̇q̇)+(I−JT J̄T )τnull

= MJ̄(ẍr − J̇q̇) + C + g + (I − JT J̄T )τnull (55)

where

F = (JM−1JT )−1(ẍr − J̇q̇) (56)

τnull = −Kq,dq̇ − α∇g. (57)

With this control law, we have the following task space
and null space closed loop dynamics, respectively:

Task space:
ë + Kdė + Kpė = 0 (58)

Null space:

(I − JT J̄T )(Mq̈ + Kq,dq̇ + αKw(q − qrest)) = 0 (59)

The task space error dynamics (58) suggest asymptotic
tracking of the task space desired trajectory xd. However,
the exact behavior of the nullspace dynamics cannot be easily
determined, as careful analysis of (59) suggests.

3) Dynamical Decoupling Controller Variation 2 (with
nullspace pre-multiplication of M, and compensation of C
and g in joint space): In (55) above, it is possible to choose
the null space vector τnull as

τnull = Mq̈0. (60)

With this choice of the null space vector, the control law will
be

τ =C+g+JTF + (I − JT J̄T )Mq̈0

=C+g+JTF + M(I − J̄J)q̈0

= M(J̄(ẍr − J̇q̇) + (I − J̄J)q̈0) + C + g (61)

where

F = (JM−1JT )−1(ẍr − J̇q̇) (62)

q̈0 = −Kq,dq̇ − α∇g. (63)

With this control law, we have the following task space
and null space closed loop dynamics respectively:

Task space:
ë + Kdė + Kpė = 0 (64)



Null space:

(I − J̄J)(q̈ + Kq,dq̇ + αKw(q − qrest)) = 0 (65)

The error dynamics (58) suggest asymptotic tracking of the
task space desired trajectory xd, and we have slightly more
simplified null space dynamics as compared to (59) ;however,
still difficult to analyze and conclude stability in nullspace.

IV. EXPERIMENTAL SETUP

For experimental evaluations, we used the Sarcos Mas-
ter Arm, a seven degree-of-freedom hydraulically actuated
anthropomorphic robot arm (Fig. 1). In order to implement
the controllers introduced above, an inverse dynamics model
of the robot is required. Additionally, torque based control
schemes require explicit representation of the inertia matrix.
As CAD data only captures the complex dynamics of ideal-
ized rigid bodies, and not the hydraulics routing throughout
the arm and the hydraulic actuators, we resorted to parameter
estimation methods [13] to obtain the necessary inertial and
center of mass parameters of the robot arm. Interestingly, the
base parameter set obtained from this least squares estimation
procedure resulted in a non-positive definite inertia matrix
M(q) at certain configurations of the robot, indicating a
physically inconsistent base parameter set. If this physically
inconsistent model were used for inverse dynamics control,
the performance of the robot would be degraded and some-
times could even cause instabilities.

In [14], a sufficient condition is discussed to test whether
the inertia matrix is positive definite, and to check whether
a given parameter set is physically consistent. However, this
method does not provide a parameter estimation procedure to
guarantee physical consistency of the inertia matrix which we
need in practice. For this purpose, we derived a novel nonlin-
ear parameter estimation method, which ensures physically
consistent inertia parameters by using a reparameterization
with the help of Cholesky decompositions [15]. Without this
nonlinear parameter identification method, most of the above
controllers would not be implementable in a stable fashion.

V. EXPERIMENTAL EVALUATIONS

The purpose of this paper is to implement the various con-
trollers mentioned above on the same experimental platform
and empirically evaluate their properties. As a benchmark
task movement, we consider the task of tracking a planar
“figure-8” pattern in task space at three different speeds (slow
speed: 8 seconds per cycle, medium speed: 4 seconds per
cycle, and fast speed: 2 seconds per cycle). We compare the
tracking results of the following eight controllers and discuss
their practical implementation issues.

1) velocity based control with joint velocity integration
(Sec. III-A.1, (14))

Fig. 1. 7 degree-of-freedom hydraulic robot: Sarcos Master Arm

2) velocity based control without joint velocity integration
(Sec. III-A.2, (19))

3) Hsu’s acceleration based control (Sec. III-B.1, (20))
4) Simplified acceleration based control variation 1 with

nullspace premultiplication of M (Sec. III-B.2, (32))
5) Simplified acceleration based control variation 2

without nullspace premultiplication of M (Sec. III-B.3,
(38))

6) Khatib’s torque based control (Sec. III-C.1, (53))
7) Dynamical decoupling control variation 1 without

nullspace premultiplication of M (Sec. III-C.2, (55))
8) Dynamical decoupling control variation 2 with

nullspace premultiplication of M (Sec. III-C.3, (61))

Figure 2 shows the experimental results of the end-point
trajectories in the slow figure-8 pattern (8 seconds per cycle)
and Figure 3 shows the results of the fast figure-8 pattern
(2 seconds per cycle). Each trajectory has some offset from
the target trajectory (thin black solid line). This offset is
primarily due to an imperfect dynamics model of the robot.
In Table I, the root mean squared errors (RMS) between
the actual and target task space trajectory is given as a
quantitative comparison. In numerical simulations, all the
controllers worked equally well. However, in the experiments,
we observed qualitative differences in each controller under
the influence of practical effects such as inaccuracy of the
parameters of the rigid dynamics model, sensory noise, and
unmodeled nonlinear dynamics such as complex hydraulics
dynamics. These practical implementation issues are dis-
cussed as follows:

• Velocity based approach: Velocity based controllers
(controllers 1 and 2) were straightforward to implement.
However, there was a practical limitation of the choice
of task space position gain to improve tracking perfor-
mance because the task space position gain effectively
appears as a task space damping gain (cf. (19)) through
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Fig. 2. Tracking results of slow movement (8 seconds per period). Left: 1) velocity based controller w/ joint velocity integration and 2) velocity based
controller w/o joint velocity integration. Center: 3) Hsu’s controller, 4) simplified acceleration controller w/ nullspace premultiplication of M, 5) and simplified
acceleration controller w/o nullspace premultiplication of M, Right: 6) Khatib’s controller, 7) dynamical decouping controller w/o nullspace premultiplication
of M, and 8) dynamical decoupling controller w/ nullspace premultiplication of M.
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Fig. 3. Tracking results of fast movement (2 seconds per period). Left: 1) velocity based controller w/ joint velocity integration and 2) velocity based
controller w/o joint velocity integration. Center: 3) Hsu’s controller, 4) simplified acceleration controller w/ nullspace premultiplication of M, 5) and simplified
acceleration controller w/o nullspace premultiplication of M, Right: 6) Khatib’s controller, 7) dynamical decouping controller w/o nullspace premultiplication
of M, and 8) dynamical decoupling controller w/ nullspace premultiplication of M.

TABLE I

ROOT MEAN SQUARED ERROR (RMS) [m] RESULTS OF THE TRACKING WITH THE DIFFERENT CONTROL LAWS

1) vel. w/ 2) vel. w/o
3) Hsu

4) acc. 1 5) acc. 2
6) Khatib

7) dyn. dec. 1 8) dyn. dec. 2
integration integration w/ M w/o M w/o M w/ M

slow speed 0.0198 0.0250 0.0562 0.0338 0.0101 0.0191 0.0270 0.0292
medium speed 0.0176 0.0229 0.0560 0.0303 0.0111 0.0190 0.0269 0.0289

fast speed 0.0182 0.0214 0.0560 0.0250 0.0177 0.0197 0.0288 0.0284

numerical differentiation of the reference joint velocities
to obtain the reference joint accelerations. We found that
increasing the task space position gain lead to instability
due to too high velocity gains and also noise in the
velocity measurements.

• Remarks on Hsu’s controller: In Hsu’s controller
(controller 3), it was difficult to find robust control in
null space and much effort was required to tune the
parameters of the relatively unintuitive and complex
null-space optimization term. We noticed a significant
problem in attemping to stabilize low inertia DOFs like
the wrist, and also suffered from significant tracking
noise due to the numerical derivation of the time deriva-
tive of the pseudo inverse.

• Torque based control with inertia-weighted pseu-
doinverse: In torque based control (controllers 6–8), we
observed a slightly skewed figure 8 pattern (e.g., see
Figure 2 right) while theoretically this approach would
achieve dynamical decoupling between task space and
null space. Presumably, this is due to inaccuracies of
the estimated inertia matrix. Moreover, computing the
inertia-weighted pseudoinverse required a ridge regres-
sion technique in order to obtain a numerically stable
inverse of the inertia matrix.

• Effect of premultiplying the nullspace term by the
inertia matrix: In acceleration and torque based control,
if the nullspace term is premultiplied by the inertia
matrix (controllers 3, 4 and 8), we observed some



strange null space movement. This is most likely due
to the inaccuracy of the estimated inertia matrix. We
suspect that inaccurate off-diagonal elements of the
estimated inertia matrix introduce undesirable coupling
among joint movements.

• Performance comparison: Among all the controllers,
the experiments demonstrated that the simplified ac-
celeration based control variation 2 (controller 5) in-
troduced in Section III-B.3 was the most promising
approach in terms of task performance, ease of param-
eter tuning, and general robustness. While our analysis
implies that there is interference between the task space
and null space, our evaluations suggest that this is not
a significant problem in practice, at least not in the test
movements that we explored. We will address this issue
in our future work.

VI. CONCLUSION

This paper presented comparative empirical investigations
of various redundancy resolution algorithms. We first re-
viewed several redundancy algorithms suggested in the liter-
ature and also introduced some new variants of the previous
approaches. We then experimentally evaluated the perfor-
mance of these algorithms on a seven-degree-of-freedom
anthropomorphic robot arm.

Our results indicate that algorithms that make sophisticated
use of the robot model are in general more sensitive to
errors in the robot model than simpler algorithms, even if
these simpler algorithms are theoretically inferior. In par-
ticular, a robust resolved acceleration-based controller that
we introduced in this paper performed remarkably well,
and in general better than all other tested algorithms. As
we expect that modeling errors will remain inevitable and
significant for complex robots like humanoids, such simple
and computationally efficient algorithms may be the best
compromise for control with redundant degrees of freedom.

From a viewpoint of optimal control framework, our math-
ematical study suggests that some of the redundacy resolution
algorithms discussed in this paper can be derived from a
generalized Gauss’ principle with different metrics for a cost
function in a unified manner [16]. We hope that this result
provides insight into further understanding of the properties
of these redundancy resolution algotithms.

Future work will address further experiments with the
suggested various redundancy algorithms on different robotic
platforms and will also investigate robustness issues in the
presence of external perturbations and contact forces. We will
also address learning algorithms for redundancy resolution,
applications to balance control for biped locomotion, and
behavioral studies to identify the principles of redundancy
resolution in humans’ behavior.
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